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Abstract

This paper reports the results of a case study on the
feasibility of developing and applying mechanical meth-
ods, based on the proof system PVS, to prove propo-
sitions about real-time systems speci�ed in the Lynch-
Vaandrager timed automata model. In using automated
provers to prove propositions about systems described
by a speci�c mathematical model, both the proofs and
the proof process can be simpli�ed by exploiting the spe-
cial properties of the mathematical model. This paper
presents the PVS speci�cation of three theories that un-
derlie the timed automata model, a template for spec-
ifying timed automata models in PVS and an example
of its instantiation, and both hand proofs and the corre-
sponding PVS proofs of two propositions. It concludes
with a discussion of our experience in applying PVS to
specify and reason about real-time systems modeled as
timed automata.

1 Introduction

Researchers have proposed many innovative formal
methods for developing real-time systems [7]. Such
methods are intended to give system developers and
customers greater con�dence that real-time systems
satisfy their requirements, especially their critical re-
quirements. However, applying formal methods to
practical systems raises a number of challenges:

1. How can the artifacts produced in applying formal
methods (e.g., formal descriptions, formal proofs)
be made understandable to the developers?

2. To what extent can software developers use the
formal methods, including formal proof methods?

3. What kinds of tools can aid developers in applying
formal methods?

The purpose of this paper is to describe the results
of a case study in which these issues were investigated.
In particular, we are interested in how a mechanical
proof system can support formal reasoning about real-
time systems using a speci�c mathematical model. By
validating human proofs of timing properties, such a
system can increase con�dence that a given speci�ca-
tion satis�es critical properties of interest.

In the case study, we applied the mechanical proof
system PVS [20, 21] to a solution of the Generalized
Railroad Crossing (GRC) problem [8, 5, 6]. The solu-
tion is based on the Lynch-Vaandrager timed automata
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model [17, 16] and uses invariant and simulation map-
ping techniques. Our approach, which should general-
ize to proving properties about real-time systems speci-
�ed in any model, was to develop a template containing
a set of common theories and a common structure use-
ful in constructing timed automatamodels and proving
properties about them. To specify a particular timed
automata model and its properties, the user �lls in the
template. The user then may use the proof system
to verify that the model satis�es the properties. This
approach simpli�es both the speci�cation process and
the proof process because users can reason in a spe-
cialized domain, the timed automata model; they need
not master the base logic and the user interface of the
full automatic proof system.

Like other approaches to formal reasoning about
real-time systems, such as SMV [18, 3], HyTech [9],
and COSPAN [10], our approach is based on a for-
mal automata model. Moreover, like these other ap-
proaches, our methods can be used to prove properties
of particular automata and, like COSPAN, to prove
simulations between automata. However, our approach
is di�erent from other approaches in two major ways.
First, the properties we prove are expressed in a stan-
dard logic with universal and existential quanti�cation.
This is in contrast to most other approaches, where
the properties to be proved are expressed either in a
temporal logic, such as CTL or Ictl, or in terms of
automata. Second, unlike other automata-based meth-
ods, the generation of proofs in our method is not com-
pletely automatic. Rather, our method supports the
checking of human-developed proofs of the properties
based on deductive reasoning. By this means, and by
providing templates for developing speci�cations, we
largely eliminate the need for ingenuity in expressing a
problem using the special notations and special logics
of a veri�cation system.

Requiring some interaction with an automatic the-
orem prover does demand a higher level of sophistica-
tion from the user. But by supporting reasoning about
automata at a high level of abstraction, we make it pos-
sible to prove more powerful results than can be done
with tools requiring more concrete descriptions of au-
tomata and avoid the state explosion problem inherent
in other automata-based approaches.

In our approach, each mechanically generated proof
closely follows a corresponding English language proof.
Such a proof is more likely to be understandable and
convincing to developers familiar with the specialized
timed automata domain and comfortable with English
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language proofs. Our study identi�ed proof techniques,
such as induction, that were most useful in proofs
about timed automata models. We designed PVS
strategies that automatically do the standard parts of
proofs having a standard structure. A major goal was
to develop PVS versions of hand proofs that could be
understood and, in some cases, even produced using
appropriate tools, by domain experts who are able to
understand hand proofs but who are not PVS experts.

In Section 2, the paper reviews the GRC bench-
mark, the timed automata model, and PVS. Section 3
presents three theories that underlie the timed au-
tomata model and gives their representation in PVS.
One of these theories, the theory machine, contains
as a theorem the induction principle used to prove
state invariants in the timed automata model. Sec-
tion 4 presents a template for de�ning timed automata
models in PVS and an example of how the template
can be instantiated to specify the Trains component
of the timed automata solution of the GRC. Section 5
presents a hand proof and the corresponding PVS proof
of the induction principle given in the theorymachine.
To illustrate how our approach can be used to check a
complex proof, Section 5 presents the hand proof of
the Safety Property (see the GRC problem statement
below) along with the corresponding PVS proof. Sec-
tions 6, 7 and 8 present major results of our case study,
a discussion of related work, and some early conclu-
sions. A fuller version of this paper can be found in
[1].

2 Background

2.1 The Generalized Railroad Crossing
The purpose of the GRC problem is to provide

a benchmark for comparing di�erent real-time for-
malisms. Although it is a \toy" problem, the di�er-
ent speci�cations and solutions of the GRC benchmark
provide many insights into the strengths and weak-
nesses of di�erent formal approaches for representing
and reasoning about real-time systems. The problem
statement is as follows:

The system to be developed operates a gate at a

railroad crossing. The railroad crossing I lies in

a region of interest R, i.e., I � R. A set of trains

travel through R on multiple tracks in both di-

rections. A sensor system determines when each

train enters and exits region R. To describe

the system formally, we de�ne a gate function
g(t) 2 [0; 90], where g(t) = 0 means the gate is

down and g(t) = 90 means the gate is up. We de-

�ne a set f�ig of occupancy intervals, where each
occupancy interval is a time interval during which

one or more trains are in I. The ith occupancy

interval is represented as �i = [�i; �i], where �i is
the time of the ith entry of a train into the cross-

ing when no other train is in the crossing and �i

is the �rst time since �i that no train is in the
crossing (i.e., the train that entered at �i has ex-

ited, as have any trains that entered the crossing

after �i).

Given two constants �1 and �2, �1 > 0; �2 > 0;
the problem is to develop a system to operate

the crossing gate that satis�es the following two
properties:

Safety Property: t 2 [i�i ) g(t) = 0 (Gate
is down during all occupancy intervals.)

Utility Property: t 62 [i[�i � �1; �i + �2] )

g(t) = 90 (Gate is up when no train is in I.)

2.2 The Timed Automata Model
The formal model used in [5, 6] to specify the GRC

problem and to develop and verify a solution repre-
sents both the computer system and its environment as
timed automata, according to the de�nitions of Lynch
and Vaandrager [17, 16]. A timed automaton is a very
general automaton, i.e., a labeled transition system. It
need not be �nite-state: for example, the state can con-
tain real-valued information such as the current time
or the position of a train or crossing gate. This makes
timed automata suitable for modeling not only com-
puter systems but also real-world entities such as trains
and gates. The timed automata model describes a sys-
tem as a set of timed automata, interacting by means
of common actions. In solving the GRC problem us-
ing timed automata, separate timed automata repre-
sent the trains, the gate, and the computer system;
the common actions are sensors reporting the arrival
of trains and actuators controlling the raising and low-
ering of the gate. Below, we de�ne the special case
of timed automata, based on the de�nitions in [5, 6],
which we used in our case study.

Timed Automata. A timed automaton A consists of
�ve components:

� states(A) is a (�nite or in�nite) set of states.

� start(A) � states(A) is a nonempty (�nite or in�nite)
set of start states.

� A mapping now from states(A) to R�0, the non-
negative real numbers.

� acts(A) is a set of actions (or events), which include

special time-passage actions �(�t), where �t is a pos-
itive real number, and non-time-passage actions, clas-

si�ed as input and output actions.

� steps(A) : states(A)� acts(A)! states(A) is a partial

function that de�nes the possible steps (i.e., transi-

tions).

This is a restricted de�nition that requires steps(A)
to be a function. The most general de�nition of timed
automata permits steps(A) to be an arbitrary relation.
Straightforward modi�cations to our approach would
handle the general case.

Timed Executions and Reachability. A trajectory
is either a single state or a continuous series of states
connected by time passage events. A timed execution
fragment is a �nite or in�nite alternating sequence � =
w0�1w1�2w2 � � �, where each wj is a trajectory and each
�j is a non-time-passage action that \connects" the
�nal state s of the preceding trajectory wj�1 with the
initial state s0 of the following trajectory wj. A timed
execution is a timed execution fragment in which the
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initial state of the �rst trajectory is a start state. A
state of a timed automaton is de�ned to be reachable if
it is the �nal state of the �nal trajectory in some �nite
timed execution of the automaton.

A timed execution is admissible if the total amount
of time-passage is in�nity. We use the notation
atexecs(A) to represent the set of admissible timed ex-
ecutions of timed automaton A. The notion of ad-
missible timed executions is important in expressing
the Utility Property (and other properties de�ned over
time intervals rather than time points) and in de�ning
simulation relations between timed automata.

MMT Automata. AnMMT automaton [19, 14, 13] is
a special case of the general Lynch-Vaandrager timed
automata model, whose states can be represented as
having a \basic" part representing the state of an un-
derlying I/O automaton [15], a current time compo-
nent now, and �rst and last components that de�ne
lower and upper time bounds on each action.

Invariants and Simulation Mappings. An invari-
ant of a timed automaton is any property that is true
of all reachable states, or equivalently, any set of states
that contains all the reachable states. A simulation
mapping [17, 16, 13] relates the states of one timed au-
tomatonA to the states of another timed automatonB
in such a way that the actions and their timings in ad-
missible timed executions correspond. The existence of
a simulation mapping from A to B implies that each
visible behavior of automaton A is contained in the set
of visible behaviors of automaton B. Proofs of both
state invariants and simulation mappings have a stan-
dard structure with a base case involving start states
and a case for each possible action.

2.3 PVS

The following description of PVS is taken from [23]:

PVS (Prototype Veri�cation System) [21] is an

environment for speci�cation and veri�cation

that has been developed at SRI International's
Computer Science Laboratory. In comparison to

other widely used veri�cation systems, such as
HOL [4] and the Boyer-Moore prover [2], the dis-

tinguishing characteristic of PVS is that it sup-

ports both a highly expressive speci�cation lan-
guage and a very e�ective interactive theorem

prover in which most of the low-level proof steps

are automated. The system consists of a speci-

�cation language, a parser, a type checker, and

an interactive proof checker. The PVS speci�ca-

tion language is based on higher-order logic with

a richly expressive type system so that a number

of semantic errors in speci�cation can be caught

by the type checker. The PVS prover consists of
a powerful collection of inference steps that can

be used to reduce a proof goal to simpler sub-

goals that can be discharged automatically by the
primitive proof steps of the prover. The primitive

proof steps involve, among other things, the use of

arithmetic and equality decision procedures, au-

tomatic rewriting, and BDD-based boolean sim-
pli�cation.

A major goal of our study was to evaluate PVS as a
basis for suitable theorem proving support for estab-
lishing properties of speci�cations in our specialized
domain. Our experience with PVS is summarized in
Section 8.

3 Underlying Theories

Our approach to specifying timed automata in PVS
is to use a template that de�nes a set of underlying
theories and provides a standard framework and stan-
dard names and de�nitions for each speci�cation. The
standard framework can be de�ned in more than one
way. In Section 6, we discuss the tradeo�s in select-
ing a framework. Below, we introduce three underly-
ing theories shared by all timed automata: the theory
machine, which contains as a theorem the induction
principle upon which we base our specialized induction
strategies; the theory states, which de�nes the compo-
nents of states; and the theory time thy, which uses
the extended non-negative real numbers to represent
time values.1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
machine [ states, actions: TYPE,

enabled: [actions,states −> bool],
trans: [actions,states −> states],
start: [states −> bool] ] : THEORY

BEGIN
s,s1: VAR states
a: VAR actions
n,n1: VAR nat

Inv: VAR [states −> bool];

reachable_hidden(s,n): RECURSIVE bool =
IF n = 0 THEN start(s)
ELSE (EXISTS a, s1: reachable_hidden(s1,n − 1)

& enabled(a,s1) & s = trans(a,s1))
ENDIF
MEASURE n

reachable(s): bool = (EXISTS n: reachable_hidden(s,n))

base(Inv) : bool = (FORALL s: start(s) => Inv(s))

inductstep(Inv) : bool = (FORALL s, a:
reachable(s) & Inv(s) & enabled(a,s) => Inv(trans(a,s)))

inductthm(Inv): bool =
base(Inv) & inductstep(Inv)
=> (FORALL s: reachable(s) => Inv(s))

machine_induct: THEOREM (FORALL Inv: inductthm(Inv))

END machinehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1. The Theory machine.

3.1 The Theory machine
Figure 1 shows the PVS speci�cation of the the-

ory machine. This theory, which de�nes the meaning
of mathematical induction in the context of the timed

1An additional theory, atexecs, which we do not need for the
examples in Section 5, de�nes atexecs(A), the admissible timed
traces of automaton A.
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automata model, is the core of our general PVS strat-
egy for performing the standard steps of state invariant
proofs. It is also of interest because Section 5 uses the
proof of the induction principle as an example of how
a hand proof can be translated into PVS. The theory
consists of the induction principle along with the de�ni-
tions needed for its statement. Most of these de�nitions
are straightforward.

The theory has the �ve parameters needed to de�ne
a timed automaton: states, the automaton's states; ac-
tions, its input alphabet; start, its start states; enabled,
the guards on state transitions; and trans, the automa-
ton's transition function. The two parameters states
and actions are simply type parameters. The actual
parameters in an instantiation of the template are the
states and actions types (i.e., the sets of possible values
of states and actions) of some particular timed automa-
ton. The parameter start is instantiated by a predicate
on states true only for start states, and the parameter
enabled by a predicate on actions and states true only
when the action is enabled in the state. The parameter
trans is instantiated by a function that maps an action
and a state to a new state.

The body of the theory describes six predicates used
to de�ne the induction principle. The �rst predicate
Inv represents an arbitrary predicate (i.e., an invari-
ant) on states. The second predicate reachable hidden
is true of a state s and natural number n if s is reach-
able from a start state in n steps. The MEASURE
clause of this de�nition permits PVS to verify during
type checking that the predicate reachable hidden is al-
ways well de�ned, i.e., that its (recursive) de�nition
terminates on all arguments. The predicate reachable
is true of a state s if reachable hidden is true for s and
some natural number n. (We have proved in PVS that
this de�nition of reachability is equivalent to the def-
inition given in Section 2.2.) The next two predicates
de�ne the two parts of the induction principle: base,
which states that the given invariant holds for the base
case, and inductstep, which states that the invariant
is preserved by every enabled action on a reachable
state. Finally, the predicate inductthm on invariants
states that an invariant is true if it holds in the base
case and is preserved in the induction step.

3.2 The Theory states
Figure 2 gives the PVS speci�cation of the very sim-

ple theory states. The main purpose of this theory
is to de�ne a standard record structure and standard
temporal information for the states of an automaton.
The theory has four parameters. The �rst three, ac-
tions, MMTstates, and time, are type parameters. The
fourth parameter �n pred is a predicate that is true if
its argument, a time value, is �nite.

The body of the theory contains a single statement
de�ning the record structure of a state. The theory re-
quires that a state contain a basic component, a time
component, and components �rst and last representing
time restrictions on speci�ed actions. In PVS, the sym-
bols \[# � � �#]" are record brackets. The basic compo-
nent contains all of the nontimed information in the
state along with any special absolute time markers.
The now component is an element of type time sat-
isfying the predicate �n pred (that is, now is �nite).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
states [ actions, MMTstates, time : TYPE,

fin_pred : [time −> bool] ] : THEORY

BEGIN

states: TYPE = [# basic: MMTstates, now: (fin_pred),
first, last: [actions −> time] #]

END stateshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 2. The Theory states.

The �rst and last components specify the upper and
lower time bounds on each action.2

Both the theory machine and the theory states have
parameters that are functions. The ability to de�ne
a theory with function parameters and to de�ne states
with components that are functions exists because PVS
has a higher-order logic. In general, using a higher-
order logic facilitates the creation of template speci-
�cations. Section 8 describes other advantages of a
higher-order logic.

3.3 The Theory time thy

Figure 3 gives the PVS speci�cation of the data type
time and the theory time thy. In a timed automaton,
each state has an associated time in R�0. However,
in the time bounds associated with actions, in�nity is
allowed as a time value to represent the case when no
�nal deadline on an action exists. Thus, to represent
time in our template, we require the union type, R�0

[

f1g.
Like many other strongly typed languages, the PVS

speci�cation language represents union types using ab-
stract data type de�nitions reminiscent of traditional
algebraic speci�cations. In PVS, these de�nitions con-
sist of a line for each constructor which speci�es the
constructor name, names and types for each argu-
ment (if any) to the constructor, and a predicate that
recognizes elements of the data type built using the
constructor.3 We thus de�ne the type time as a PVS
data type. (Later, we de�ne another part of our tem-
plate, the type actions, as a PVS data type; its de�ni-
tion is similarly understood.)

The data type time has two constructors. The �rst
constructor, �ntime, has a non-negative real parameter
dur and the recognizer �ntime?, and the second con-
structor, in�nity, has no parameters and the recognizer
inftime?. The PVS prover recognizes the following as-
sertions as true:

dur(�ntime(x)) = x (for any x 2 R�0)

�ntime?(�ntime(x)) (for any x 2 R�0)

inftime?(in�nity)

The theory time thy contains the de�nitions of the
standard arithmetic operators and predicates for time

2Although the type states is designed to make it easy to ex-
press an MMT automaton as a timed automaton, it is general

enough for any timed automaton.
3When processing a datatype declaration, the PVS type-

checker generates individual declarations for all the construc-
tors, their arguments, and their recognizers, together with ax-
ioms de�ning their relationships, an induction axiom, etc.
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hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
time: DATATYPE

BEGIN

fintime(dur:{r:real|r>=0}): fintime?
infinity: inftime?

END time

time_thy: THEORY

BEGIN

IMPORTING time

zero: time = fintime(0);

<= (t1,t2:time):bool =
IF fintime?(t1) & fintime?(t2) THEN dur(t1) <= dur(t2)
ELSE inftime?(t2) ENDIF;

>= (t1,t2:time):bool =
IF fintime?(t1) & fintime?(t2) THEN dur(t1) >= dur(t2)
ELSE inftime?(t1) ENDIF;

< (t1,t2:time):bool =
IF fintime?(t1) & fintime?(t2) THEN dur(t1) < dur(t2)
ELSE NOT(inftime?(t1)) & inftime?(t2) ENDIF;

> (t1,t2:time):bool =
IF fintime?(t1) & fintime?(t2) THEN dur(t1) > dur(t2)
ELSE NOT(inftime?(t2)) & inftime?(t1) ENDIF;

+ (t1,t2:time):time =
IF fintime?(t1) & fintime?(t2)
THEN fintime(dur(t1) + dur(t2)) ELSE infinity ENDIF;

− (t1:time, t2:(fintime?)):time =
IF fintime?(t1) & dur(t1) >= dur(t2)
THEN fintime(dur(t1) − dur(t2)) ELSE infinity ENDIF;

END time_thyhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3. Theory time thy and Data Type time.

values. Note that we have exploited the support PVS
provides for overloading names.

4 A Timed Automata Model Template

4.1 What the Template Looks Like
Figure 4 shows one template we have developed for

de�ning a timed automata model in PVS. The tem-
plate imports appropriate instantiations of the �xed
theories time thy, states, andmachine. The theory
time thy appears �rst in the template because it has
no parameters. The two remaining theories, states
and machine, appear later in the template because
their parameters must �rst be de�ned. The template
is instantiated by �lling in the missing parts and adding
any desired auxiliary declarations and de�nitions. The
missing parts are represented in Figure 4 by the symbol
\< : : : >".

Before the theory states can be imported, two of its
parameters, actions and MMTstates, must be de�ned.
The type actions is de�ned as a data type with one
constructor, the time passage action nu, which is an
action associated with every timed automata model.
The corresponding parameter extractor, called timeof,
is declared as an element of type time that satis�es the
predicate �ntime?. The symbol \< : : : >" is a place-
holder for the other (non-time-passage) actions associ-
ated with a given timed automaton. The type of the
basic component of an element of type states is MMT-
states. The symbol \< : : : >" that follows \MMT-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
<timed-automaton name>: THEORY

BEGIN

IMPORTING time_thy

actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
<...>

END actions;

MMTstates: TYPE = <...>

IMPORTING states[actions,MMTstates,time,fintime?]

OKstate? (s:states): bool = <...> ;

enabled_general (a:actions, s:states):bool =
now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled_specific (a:actions, s:states):bool =
CASES a OF
nu(delta_t): (delta_t > zero & <...>),
<...>

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF
nu(delta_t): s WITH [now := now(s)+delta_t],
<...>

ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s)

& OKstate?(trans(a,s));

start (s:states):bool = (now(s) = zero) & <...> ;

IMPORTING machine[states, actions, enabled, trans, start]

END <timed-automaton name>hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4. A Timed Automata Model Template.

states: TYPE =" is a place holder for the nondefault
part of the state of the timed automaton, typically a
record structure. Once actions and MMTstates are de-
�ned, the type states can be de�ned by importing the
appropriate instance of the theory states.

One proceeds in a similar fashion before importing
the theory machine. The de�nition of the predicate
enabled divides naturally into three parts. The �rst
part, enabled general, is the same for all timed au-
tomata; it de�nes the time bounds associated with ac-
tions. In particular, if the automaton is in state s, the
time now(s) that action a can occur is bounded be-
low by �rst(s)(a) and above by last(s)(a). The second
part, called enabled speci�c, restricts the time passage
action nu to positive values and provides place holders
for other restrictions on when actions are enabled in
a given timed automaton. The third part is de�ned
by the predicate OKstate? on states, which provides
an optional mechanism for enforcing a state invariant
by �at. In the transition function trans, the de�nition
of \nu(delta t)" is the same for all timed automata:
as expressed by the WITH construct, the e�ect of a
time passage action is simply to update the now com-
ponent of the state. The remaining action cases for
a particular timed automaton must be supplied. Fi-
nally, the predicate start(s) must enforce the require-
ment now(s) = zero.

We introduce an additional convention in our timed
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automaton template to make our proof strategies
simpler: State invariants are assigned names of the
form Inv <name>, and the associated state invariant
lemma (or theorem) is called lemma <name> (or theo-
rem <name>). The PVS proof of the Safety Property
in Section 5 uses this convention.

4.2 Instantiating the Template
To illustrate an instantiation of the template, we

use the template to specify in PVS the timed automa-
ton Trains, a component of the timed automata so-
lution of the GRC problem. Before presenting the
PVS speci�cation, we present the original speci�ca-
tion of Trains, extracted from [6]. The timed automa-
ton Trains has no input actions, three output actions,
enterR(r), enterI(r), and exit(r), for each train r, and
the time passage action �(�t). The basic component of
each train's state is the status component, which sim-
ply describes where the train is. Each train's state also
includes a current time component now, and �rst and
last components for each action, giving the earliest and
latest times at which an action can occur once enabled.

The state transitions of Trains are described by
specifying the \Precondition" under which each action
can occur and the \E�ect" of each action. s denotes
the state before the event occurs, and s0 the state af-
terwards. The transition function contains conditions
that enforce the bound assumptions; that is, an event
cannot happen before its �rst time, and time cannot
pass beyond any last time. In the Trains speci�cation,
only the state components now and �rst(enterI(r)) and
last(enterI(r)) for each r contain nontrivial informa-
tion, so the other cases are ignored. Note that the
time that enterI(r) occurs is always no sooner than "1
and no later than "2 after the train r entered the region
R. The states and transition of the timed automaton
Trains are shown in Figure 5.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

State:
now, a nonnegative real, initially 0
for each train r :

r.status ∈ {not-here, P, I}, initially not-here
first(enterI(r)), a nonnegative real, initially 0
last(enterI(r)), a nonnegative real or ∞, initially ∞

Transitions:
enterR(r) enterI(r)

Precondition: Precondition:
s.r.status = P s.r.status = P

Effect: s.now ≥ s.first(enterI(r))
s ′.r.status = P Effect:
s ′.first(enterI(r)) = now + ε1 s ′.r.status = I
s ′.last(enterI(r)) = now + ε2 s ′.first(enterI(r)) = 0

s ′.last(enterI(r)) = ∞
exit(r) ν(∆t )

Precondition: Precondition:
s.r.status = I for all r ,

Effect: s.now + ∆t ≤ s.last(enterI(r))
s ′.r.status = not-here Effect:

s ′.now = s.now + ∆t
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5. States and Transitions of Trains.

Figure 6 uses our template to specify the Trains au-
tomaton in PVS. In addition to the time passage ac-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
trains: THEORY
BEGIN
IMPORTING time_thy
delta_t: VAR (fintime?); eps_1, eps_2: (fintime?);
train: TYPE; r: VAR train;
actions : DATATYPE
BEGIN

nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?

END actions;
a: VAR actions; status: TYPE = {not_here,P,I};
MMTstates: TYPE = [train −> status];
IMPORTING states[actions,MMTstates,time,fintime?]
status(r:train, s:states):status = basic(s)(r);
OKstate? (s:states): bool = true ;
enabled_general (a:actions, s:states):bool =

now(s) >= first(s)(a) & now(s) <= last(s)(a);
enabled_specific (a:actions, s:states):bool =

CASES a OF
nu(delta_t): (delta_t > zero &

(FORALL r: now(s) + delta_t <= last(s)(enterI(r)))),
enterR(r): status(r,s) = not_here,
enterI(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,

ENDCASES
trans (a:actions, s:states):states =

CASES a OF
nu(delta_t): s WITH [now := now(s)+delta_t],
enterR(r): (# basic := basic(s) WITH [r := P], now := now(s),

first := first(s) WITH [(enterI(r)) := now(s)+eps_1],
last := last(s) WITH [(enterI(r)) := now(s)+eps_2] #),

enterI(r): (# basic := basic(s) WITH [r := I], now := now(s),
first := first(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := infinity] #),

exit(r): s WITH [basic := basic(s) WITH [r := not_here]]
ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool =
(s = (# basic := (LAMBDA r: not_here), now := zero,

first := (LAMBDA a: zero), last := (LAMBDA a: infinity) #));
IMPORTING machine[states, actions, enabled, trans, start]

END trainshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 6. Instantiating the Template for Trains.

tion nu, the instantiation contains the three output ac-
tions, enterR(r), enterI(r), and exit(r), for each train
r. The basic component of each train's state, which
has type status, has the value not here, P, or I. The
predicate enabled speci�c captures the \Preconditions"
and the function trans captures the \E�ects" shown
in the above speci�cation. Note the lower and upper
bounds, eps 1 and eps 2 on the action enterI. Also
note the initialization of the start states with the basic
component set to not here, the now component to zero
(thus ful�lling the template requirement), and the �rst
and last components to zero and in�nity, respectively.
Our template instantiation also includes some auxil-
iary declarations, such as the types trains and status
needed to de�ne the type MMTstates, and the func-
tion status(r; s), which retrieves the value of the status
component of train r in state s.

5 Two Examples of Proofs

To illustrate the correspondence between a hand
proof and a PVS proof, this section presents exam-
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Step 1. We wish to prove the following formula—call it (*):

∀Inv : states → bool.
(∀s : states. start (s ) ⇒ Inv (s ) ∧
∀s : states , a : actions : ((reachable (s ) ∧ Inv (s )

∧ enabled (a , s ))
⇒ Inv (trans (a , s ))))

⇒ ∀s : states. reachable (s ) ⇒ Inv (s )

Step 2. Let Inv 1 be any state invariant. Claim: the body of (*)
holds for Inv 1.

Step 3. To prove the claim, suppose that

(α) ∀s : states. start (s ) ⇒ Inv 1(s )
and

(β) ∀s : states , a : actions : ((reachable (s ) ∧ Inv 1(s )
∧ enabled (a , s ))

⇒ Inv 1(trans (a , s ))).

Step 4. Then, let s 1 be any state. We will show that

reachable (s 1) ⇒ Inv 1(s 1).

Step 5. Thus, suppose reachable (s 1).
Step 6. Now, reachable (s 1) means that s 1 can be reached from a

start state in n steps, for some n ≥ 0.
Step 7. We will use induction on n.

Step 7.1. If n = 0, then start (s 1); hence by (α), Inv 1(s 1) holds.
Step 7.2. If n > 0, then s 1 = trans (a 0, s 0) for some state s 0

reachable in n −1 steps from a start state and some ac-
tion a 0 for which enabled (a 0, s 0) is true. By induc-
tive hypothesis, Inv 1(s 0) holds. By (β) applied to a 0
and s 0, Inv 1(trans (a 0, s 0)) holds; i.e., Inv 1(s 1) holds.

QED.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 7. Induction Principle Hand Proof.

ple hand proofs and corresponding PVS proofs of two
results. The �rst hand proof is a proof of the induc-
tion principle presented in Section 3.1. The second is a
proof of the Safety Property taken from the technical
report [5].

5.1 Proof of the Induction Principle

The �rst hand proof establishes an essential com-
ponent of the support we provide for developing PVS
proofs for timed automata, namely, the induction prin-
ciple. This example illustrates how a very detailed
hand proof can be translated almost directly into a
PVS proof. At the same time, it illustrates the need
to bring additional knowledge to the prover at points
where the hand proof implicitly appeals to human
knowledge and experience.

Figure 7 gives our detailed hand proof of the induc-
tion principle, while Figure 8 presents our best PVS
approximation to that proof. A systematic method
for translating much of the hand proof to the PVS
proof maps short proof steps to particular PVS rules
or strategies. For example, to appeal to a de�nition,
use EXPAND; to say \let � � �" or \choose � � �", use
SKOLEM; to apply a quanti�ed formula or to establish
one by providing an instance, use INST; to do straight-
forward simpli�cation and propositional reasoning, use
GROUND; and to set up an induction, use INDUCT.
Together with a few uses of DELETE to simplify the
current proof goal and one use of SIMPLIFY to sim-
plify an assertion, the set of translations above is suf-
�cient to handle nearly everything in our hand proof.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
(""

Step 1. (EXPAND "inductthm")

Step 2. (SKOLEM 1 "Inv_1")

Step 3. (FLATTEN)

Step 4. (SKOLEM 1 "s_1")

Step 5. (FLATTEN)

Step 6. (EXPAND "reachable")

Show induction result (CASE "(FORALL(n): (FORALL(s):
is sufficient. (reachable_hidden(s,n) => Inv_1(s))))")

(("1"
Let n_0 be such that (DELETE −2 −3)
reachable_hidden(s_1,n_0). (SKOLEM −2 "n_0")

Induction result applied (INST −1 "n_0")
to s_1 and n_0 (INST −1 "s_1")
finishes the proof. (GROUND))

("2"
Step 7. (INDUCT "n")

Begin Step 7.1. (("1"
(DELETE −2 −3 2)

If n = 0 then start(s_1). (EXPAND "reachable_hidden")

By (α), (EXPAND "base")
Inv_1(s_1) holds. (PROPAX))

Begin Step 7.2. ("2"

(DELETE −1 −3 2)
Let j_1 ≥ 0. (SKOLEM 1 "j_1")
Suppose ind. hyp. for j_1. (FLATTEN)

Choose s_01, and (SKOLEM 1 "s_01")
suppose reachable in j_1+1 steps. (FLATTEN)

Then s_01 is reached from s via a (EXPAND "reachable_hidden" −2)
for some s reachable in j_1 steps. (SIMPLIFY)
Let a = a_0 and s = s_0. (SKOLEM −2 ("a_0" "s_0"))

By inductive hypothesis, (INST −1 "s_0")
Inv_1(s_0) holds. (GROUND)

By (β) (EXPAND "inductstep")
applied to a_0 and s_0, (INST −5 "s_0" "a_0")
Inv_1(trans(a_0,s_0)) holds, (GROUND)

because s_0 is reachable (EXPAND "reachable")
in j_1 steps. (INST 1 "j_1"))))))hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8. PVS Proof of the Induction Principle.

The correspondence between the steps in the hand
proof and the PVS steps is more easily understood from
the actual user interaction with PVS. Figure 9 shows
the contents of the PVS proof bu�er during the �rst
few steps of the proof in Figure 8. The current goal
at each step is represented as a sequent, with a line
dividing a list of hypotheses from a list of conclusions.
At each step, the object is to show that at least one
of the conclusions follows from the hypotheses. The
sequents in Figure 9 all have only one conclusion.

The parts of the hand proof in Figure 7 that require
the help of a knowledgeable human when translating to
the PVS proof in Figure 8 are those associated with in-
duction: �rst, the speci�cation of exactly what to prove
by induction; second, establishing that this inductive
assertion is enough to obtain the proof; and �nally, re-
placement of the state s1 in the induction step Step 7.2
by an arbitrary state reachable in the same number of
steps.

To fully understand the correspondence between the
proofs in Figures 7 and 8, one needs to run PVS. For
example, although the speci�cation ofmachinemakes
clear that \inductstep" corresponds to hypothesis (�),
to apply (�) to a 0 and s 0, one needs to know that its
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machine_induct :

|-------
{1} (FORALL Inv: inductthm(Inv))

Rule? (EXPAND "inductthm")
Expanding the definition of inductthm, this simplifies to:

machine_induct :

|-------
{1} (FORALL Inv: base(Inv) & inductstep(Inv)

=> (FORALL (s: states): reachable(s) => Inv(s)))

Rule? (SKOLEM 1 "Inv_1")
For the top quantifier in 1, we introduce Skolem constants: Inv_1,
this simplifies to:

machine_induct :

|-------
{1} base(Inv_1) & inductstep(Inv_1)

=> (FORALL (s: states): reachable(s) => Inv_1(s))

Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:

machine_induct :

{−1} base(Inv_1)
{−2} inductstep(Inv_1)
|-------

{1} (FORALL (s: states): reachable(s) => Inv_1(s))

Rule? (SKOLEM 1 "s_1")
For the top quantifier in 1, we introduce Skolem constants: s_1,
this simplifies to:

machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
|-------

{1} reachable(s_1) => Inv_1(s_1)

Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:

machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
{−3} reachable(s_1)
|-------

{1} Inv_1(s_1)

Rule? (EXPAND "reachable")
Expanding the definition of reachable, this simplifies to:

machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
{−3} (EXISTS (n: nat): reachable_hidden(s_1, n))
|-------

[1] Inv_1(s_1)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 9. Contents of the PVS Proof Buffer.

assertion number is �5. The ability to tag assertions
or identify them by content would reduce this problem.

In contrast to our detailed PVS proof, we show in
Figure 10 a more conventional PVS proof of the in-
duction principle which relies heavily on the workhorse
strategy GRIND.4 In this proof, one must also sup-
ply the inductive assertion. In addition, one must de-
termine when to tell GRIND not to reduce quanti�ed

4The GRIND strategy in PVS approximates an automatic

theorem prover. It expands de�nitions and forms, applies
rewrites, invokes propositional and arithmetic decision proce-
dures, and does automatic skolemization and instantiation. In-

stantiation is done by best guess and can be incorrect. To pro-
vide more control of instantiation and other features, GRIND
has options that can be selected by supplying arguments.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
(""
(GRIND :IF-MATCH NIL)
(CASE "(FORALL (n): (FORALL (s):

(reachable_hidden(s,n) IMPLIES Inv!1(s))))")
(("1" (GRIND))
("2"
(INDUCT "n")
(("1" (GRIND))
("2"
(GRIND :IF-MATCH NIL)
(APPLY (THEN (INST −8 "s1!1" "a!1") (INST −2 "s1!1"))

"At this point, it is evident that we have the inductive hypo-
thesis for n = j!1 and the hypothesis (beta) to work with, and
need to establish Inv!1(perform(a!1,s1!1)). So, we instan-
tiate the latter with s1!1 and a!1, and the former with s1!1.")

(GRIND))))))
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 10. PVS Proof Using GRIND.

formulae (the e�ect of the \:IF-MATCH NIL" argu-
ment), and help PVS decide how to use the inductive
hypothesis and assumption (�). One must also analyze
the current goal after a call to GRIND terminates to
recognize what help is needed.

We refer to these two styles of PVS proofs as small
step and large step proofs. One can view a hand proof
as a proof plan for a PVS proof. With a small step
proof, one can more easily determine what point has
been reached in a proof plan and what step one wishes
to take next. With a large step proof, especially one
using generic large steps based on GRIND, it is harder
to control the position in the proof plan. In fact, in
some cases, this position may not be well de�ned, since
GRIND may perform steps from the plan out of order.
With experience, a PVS user can often predict the re-
sult of a large step, but even so must rely on interaction
with PVS to see just what piece of information from
the plan should be provided to PVS next.

In our experience, both styles of proof bene�t, in
terms of speed of construction with minimal backtrack-
ing, from the existence of a proof plan. We note that
if the automatic-instantiation feature of GRIND had
been somewhat more powerful, the only proof informa-
tion PVS would have required in the large step proof is
the inductive assertion, and the reason why the result-
ing PVS proof worked would be impossible to discern.5

The degree to which we �nd the resulting PVS proof
convincing, in the sense that the theorem is true for the
right reasons, is certainly greater with the small step
proof, although some of these reasons were supplied to
PVS in the large step proof.

On the other hand, for theorems with complex
proofs, or for theorems with proofs having a stan-
dard structure, mimicking all the micro-steps of the
PVS proof is unnecessarily tedious and repetitive. In
our specialized domain, we have been able to de�ne
reusable PVS strategies that allow the user to follow a
proof plan reasonably closely without most of the te-
dium of providing the micro-steps. Large step proofs
using GRIND typically execute several times as slowly

5If one uses GRIND$ in place of GRIND, PVS will save the
small steps that GRIND has followed. However, understanding
these steps is very di�cult.
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as short step proofs. Because our strategies are spe-
cialized for timed automata, they yield an e�ciency
comparable to that of short step proofs.

5.2 Proof of the Safety Property
Our second example of a hand proof translated into

a PVS proof is a proof with a standard structure:
namely, the proof by induction of a state invariant.
The particular state invariant is the Safety Property
for the timed automaton SystImpl, which is stated and
proved as Lemma 6.3 in [5, 6]. Figure 11 shows the
hand proof and the corresponding PVS proof.

The PVS proof uses the induction strategy
AUTO PROOF UNIV SYSTIMPL to set up the in-
duction, potentially producing subgoals for the base
case and each possible action. Subgoals deemed suf-
�ciently \trivial" are proved automatically, and only
the nontrivial subgoals are displayed. As can be seen,
in the hand proof, the action cases for enterI(r) and
raise are the nontrivial cases. The PVS proof of the
enterI(r) case is obtained as in the hand proof by invok-
ing the precondition, doing a case split, applying the
indicated lemmas appropriately, and asking for a little
simpli�cation and linear arithmetic. The PVS proof of
the raise case is translated analogously. An extra case
up is generated in the PVS proof, but is handled by
invoking the precondition, a step considered obvious in
the hand proof.

In our general experience with proofs of state invari-
ants, we have noticed that an \extra" case waved away
as obvious in the hand proof occasionally turns up in
the PVS proof. Appealing to one of a short list of stan-
dard facts about timed automata typically proves these
cases. In proving the Safety Property, the standard fact
needed is that the precondition must be satis�ed or the
case will not arise. Adding such standard facts to the
induction strategies would eliminate the need to deal
with most such \obvious" cases interactively, but at
the expense of longer proof times.

A close look at the PVS proof of the Safety Property
in Figure 11 reveals a few subtleties involving the choice
of a particular version of a strategy or its arguments.6

However, all of these choices could be made automat-
ically by an interface to PVS, given user input of the
form \use induction" or \apply invariant lemma 6 1".
Thus, in proving the Safety Property, it is possible to
shield the veri�er from low-level interaction with PVS.
Our experience so far with other state invariant proofs
indicates that this is very often the case.

A third category of translations of hand proofs to
PVS proofs contains translations of proofs with a more
ad hoc proof structure than state invariant proofs. For
more ad hoc proofs, our results so far suggest that one
cannot disengage the veri�er from low-level interaction
with PVS to the extent that one can with the more
structured state invariant proofs. However, one can
identify repeated patterns of reasoning that occur be-
cause a result from a particular domain with much
shared structure is being proved. Appropriate PVS
strategies can frequently handle these repeated pat-
terns. A menu of such strategies, specially tailored for

6The PVS proof commands are embedded in APPLY so that
they can be accompanied by comments.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Lemma 6.3. In all reachable states of SystImpl, if Trains.r.status = I for any
r, then Gate.status = down.

Proof: Use induction. The interesting cases are enterI and raise . Fix r .

1. enterI (r )

By the precondition, s.Trains.r.status =P .

If s.Gate.status ∈ {up,going –up }, then Lemma 6.1 implies that
s.Trains.f irst (enterI (r )) > now + γdown, so s.Trains.f irst (enterI (r ))>now .
But, the precondition for enterI (r ) is s.Trains.f irst (enterI (r )) ≤ now .
This means that it is impossible for this action to occur, a contradiction.

If s.Gate.status = going −down , then Lemma 6.2 implies that
s.Trains.f irst (enterI (r )) > s.Gate.last (down ). By Lemma B.1,
s.Gate.status = going −down implies s.Gate.last (down ) ≥ now . This
implies that s.Trains.f irst (enterI (r )) > now , which again means that it is
impossible for this action to occur.

The only remaining case is s.Gate.status = down. This implies
s ′.Gate.status = down, which suffices.

2. raise

We need to show that the gate doesn’t get raised when a train is in I . So
suppose that s.Trains.r.status = I . The precondition of raise states that
∃/ r : s.CompImpl.r.sched −time ≤ now + γup + δ + γdown, which implies that,
for all r , s.CompImpl.r.sched −time > now . But Parts 1 and 3 of Lemma
5.1 imply that in this case, s.Trains.r.status = P , a contradiction.

Inv_6_3_A(s: states):bool =
(FORALL (r: train): status(r,s) = I => gate_status(s) = fully_down);

("" (APPLY (AUTO_PROOF_UNIV_SYSTIMPL "Inv_6_3_A")
"Use induction. Fix r = r_2.")

(("1" (APPLY (THEN (EXPAND "enabled_specific")(SYSTIMPL_SIMP))
"Case enterI(r_1). Invoke the precondition.")

(CASE "gate_status(s_1) = fully_up OR gate_status(s_1) = going_up")
(("1" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_1" "r_1")

(SYSTIMPL_SIMP))
"Invoke the invariant lemma 6_1.")

(APPLY (TIME_ETC_SIMP)
"Derive contradiction with the precondition."))

("2" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_2" "r_1")
(SYSTIMPL_SIMP))

"Invoke the invariant lemma 6_2.")
(APPLY (THEN (APPLY_INV_LEMMA "B_1_1")

(SYSTIMPL_SIMP))
"Invoke invariant lemma B_1, part 1.")

(APPLY (TIME_ETC_SIMP)
"Derive contradiction with the precondition."))))

("2" (APPLY (THEN (EXPAND "enabled_specific")(SYSTIMPL_SIMP)
(INST 2 "r_2"))

"Case raise. Invoke and specialize the precondition.")
(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_1" "r_2")

(SYSTIMPL_SIMP))
"Invoke invariant lemma 5_1, part 1.")

(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_3" "r_2")
(SYSTIMPL_SIMP))

"Invoke invariant lemma 5_1, part 3.")
(APPLY (TIME_ETC_SIMP) "Derive contradiction."))

("3" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP))
"Case up. Invoke the precondition."))))hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 11. Safety Property Hand/PVS Proofs.

timed automata models, can support translating hand
proofs into PVS proofs made up of a combination of
a limited set of small PVS steps combined with large
standard steps, whose correspondence with the source
hand proofs is much easier to see.

6 Summary of Results

Based on our experience to date, we discuss below
our use of template speci�cations, how repeating pat-
terns in proofs were detected and exploited, how best
to interact with the theorem prover, and how real-time
properties are expressed and proven in our approach.
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6.1 Using Template Speci�cations
Using a template to create a formal speci�cation of a

particular mathematical model greatly reduces the re-
quired e�ort. This reduction comes from two sources.
First, with the basic theories and lemmas already spec-
i�ed, the amount that remains to be speci�ed for a
particular model is signi�cantly reduced. Second, the
existence of conventions regarding names, types, and
de�nitions of the missing parts eliminates many orga-
nizational decisions required in specifying a particular
model: the speci�er needs only to �ll in the missing
pieces.

Creating a template helped us to identify common-
alities among instances of the timed automata model
that are useful in proving properties. In our study,
we identi�ed induction structured over actions as an
important principle that underlies many proofs about
timed automata models. This principle can be used to
prove state invariants about these models by invoking
appropriately designed PVS strategies.

Templates can be enforced in di�erent ways.
Through an additional, top-level parameterized theory
added to the framework in Section 4, we can require
that all models include a time passage action and en-
force other similar template conventions. The advan-
tage of this approach is that it permits many additional
generic lemmas to be proved without instantiating the
template. An alternative is to enforce the template
conventions through an interface that compiles user-
provided information into a PVS speci�cation of the
proper form. Our experiments with template instanti-
ations suggests that proofs run more e�ciently when
the second approach is used.

However, no matter how the template is enforced,
the strong type system in PVS is very helpful in estab-
lishing a template discipline. In contrast to Lamport
[11], we �nd strong typing more a help than a hin-
drance.

6.2 Patterns in Timed Automaton Proofs
In analyzing proofs in the timed automata domain,

our approach has been to create small step proofs, opti-
mize them for both e�ciency and logical structure, and
�nd patterns that can be translated into PVS strate-
gies. We have found a variety of patterns. These
patterns can be classi�ed by whether it is possible to
translate them into an appropriate strategy, whether
the strategy can be written in PVS as it stands or re-
quires enhancements to PVS, and whether the strategy
requires instance-speci�c details to compile or choose.
The classi�cation of certain repeating patterns remains
to be decided. For some patterns, we do not yet have a
PVS strategy but can supply a heuristic: an example is
the recurring argument in hand proofs that time can-
not pass beyond a certain bound unless a certain type
of event occurs. In following a hand proof, the need to
turn to a heuristic typically arises when the hand proof
does not supply enough detail.

6.3 Patterns in Using PVS
As indicated above, our approach to PVS proofs

about timed automata is to follow a hand proof as
closely as possible. For nontrivial theorems, a hand
proof provides essential guidance in constructing the

automated proof, since it presents, in some organized
fashion, the reasons why a theorem is believed to be
true. These reasons generally correspond closely to the
information that must be supplied to a theorem prover.

As illustrated in Section 5, very detailed proofs and
routine proofs can be easily translated into PVS. A
direct translation of a detailed hand proof to a PVS
proof involves detailed human guidance, but most of
this guidance is routine and could conceivably be mech-
anized. In translating a hand proof with a routine
structure (e.g., an induction proof of a state invariant
of an automaton with a standard structure), human
guidance is mostly needed to provide the non-routine
facts and case splits needed to complete proof branches
generated by a strategy that performs the standard ini-
tial stages of the proof. Translating hand proofs that
omitmany details and have an ad hoc structure to PVS
requires signi�cant interactive guidance. However, this
problem can be reduced by using model-speci�c strate-
gies and heuristics. The model-speci�c strategies per-
mit one to take larger steps in a proof and make it
easier to track one's place in the hand proof. A prelim-
inary exercise in developing model-speci�c strategies
for timed automata and employing them in an ad hoc
proof resulted in a more than 60% reduction in proof
size (415 lines to 158 lines) with no penalty|in fact, a
slight improvement|in the running time of the proof.

To keep track of the correspondence between a hand
proof and a PVS proof, inserting comments in the PVS
proof is very helpful, and for a proof of any length, it
is essential. A combination of comments in the proof
and a glossary of English meanings of PVS strategies
can create con�dence that the PVS proof succeeded for
the right reasons.

6.4 Proving Real-Time Properties
In our approach, the real-time properties of a timed

automaton are determined by the de�nitions of enabled
and trans. Real-time properties that are state invari-
ants are proved in PVS by induction. The speci�c stage
at which reasoning about time occurs in each branch
of the induction is typically a point at which a set of
inequalities involving time values has been established
by invoking the de�nitions of enabled and trans and by
introducing previous state invariant lemmas. One must
then prove that at least one inequality in a new set of
inequalities holds. If time were simply represented by
the non-negative real numbers, the decision procedures
in PVS that do arithmetic would complete the proof in
a single step. Because we include in�nity in the set of
possible time values, these decision procedures will not
work directly. To handle this problem, we developed
a strategy called TIME ETC SIMP that reduces time
inequalities to inequalities involving non-negative real
numbers and then invokes the PVS decision procedures
for arithmetic.

Care must be taken in translating assertions involv-
ing time values from hand proofs into PVS. While \neg-
ative" time values can be used in hand proofs, they
cannot be used in our PVS proofs, because our type
time does not contain values corresponding to negative
numbers. To handle this problem, we transform any
equations or inequalities involving subtraction of time
values so that they involve only addition, prior to doing
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PVS proofs.
Other real-time properties of a timed automaton

concern the relative timing of events during an admis-
sible timed execution. Proofs of these properties often
involve establishing the claim that if the automaton is
in a certain state, then time cannot pass beyond a cer-
tain time bound unless a speci�ed event occurs prior to
the bound. As indicated above, we lack a speci�c strat-
egy for this type of reasoning. However, we do have
a heuristic that often works. With this heuristic, we
prove by induction that if the required event does not
occur between the current time now(s) and the time
bound, then some component of the state involved in
the precondition for time passage is not changed by
subsequent events and that the precondition prevents
a time passage event from crossing the bound. It is
likely that a PVS strategy with a su�cient set of argu-
ments can be developed to set up a proof based on this
heuristic. We also envision an interactive interface that
guides the user through an application of the strategy
or of the heuristic directly.

7 Related Work

An e�ort closely related to ours uses the Larch
Shared Language and the Larch Prover (LP) to prove
state invariants and simulations for real time systems
represented as timed automata [12]. In this approach,
proofs are developed in LP that follow hand proofs, but
proof strategies specialized to timed automata that can
support this correspondence in more complex proofs
and proofs of an ad hoc structure are not included.
Whether such proof strategies can be developed in
LP to the same extent as in PVS is an open ques-
tion. Other e�orts have used PVS in proving prop-
erties of real-time systems expressed in di�erent for-
malisms. For example, a proof assistant that encodes
the Duration Calculus in PVS and supports the devel-
opment of Duration Calculus speci�cations and proofs
of real-time properties is described in [22]. A second
e�ort whose goal is to make formal speci�cation and
theorem proving in PVS more accessible to hardware
design practitioners is described in [23].

8 Conclusions

A major goal of our research is to make the use of an
automatic theorem prover feasible for software develop-
ers. Checking properties of speci�cations of real-time
systems with a mechanical theorem prover can lead to
the early discovery of inconsistencies and omissions in a
design. We envision that such use of automatic provers
can be made feasible by appropriate automated sup-
port. Parts of this support may be direct, e.g., through
an appropriate interface to a system such as PVS that
supports speci�cation and automatic theorem proving.
Other parts of it may be indirect, e.g., by way of a
mechanism for arriving at formal speci�cations that
are understandable to both the developer and a formal
methods expert, and for creating mechanically checked
proofs that also are understandable to both.

Our early results are encouraging. For real-time sys-
tems speci�ed in the timed automata model, we have
developed a template that can be instantiated in a
straightforward manner. For understandable transla-
tions of hand proofs, we have identi�ed PVS proof steps

that correspond to natural steps in hand proofs. We
have been able to de�ne specialized strategies in PVS
that make the translation of hand proofs of state in-
variants into recognizably similar PVS proofs straight-
forward and also simple enough in many cases that
developers themselves could create them through an
appropriate interface to PVS. Such an interface would
perform such services as choosing the appropriate in-
stance of the induction strategy or the invariant lemma
strategy and would also be useful to the formal meth-
ods expert in simplifying the proof e�ort. We have
de�ned additional model-speci�c strategies that can be
useful to the formalmethods expert in translating more
complex proofs of properties of designs into recogniz-
able PVS equivalents.

Although PVS strategies such as GRIND reduce the
necessary human interaction with the theorem prover
in obtaining a proof, the reasoning in proofs obtained
from these strategies is hard to follow. In contrast,
we have found that human-understandable PVS proofs
can be derived naturally and with an acceptable level of
human interaction by applying a set of domain-speci�c
strategies in the course of following a hand proof. Be-
ing specialized, these strategies result in proofs with a
signi�cantly shorter execution time than proofs based
on GRIND. There is also an advantage in undertaking
proofs using our methods and strategies when the proof
does not succeed: it is much simpler to discover the rea-
son that the proof does not succeed when one knows
exactly the corresponding step in the hand proof.

Similar observations apply when we compare our
methods to other automata-based formal approaches
to reasoning about real-time systems. In particular,
while the latter can be used to prove properties, they
provide no feedback on why the properties are true.
When a proof fails, a tool such as SMV can supply
the trace of a counterexample. While this information
is helpful, it is on the same low level as that used in
software debugging. By contrast, the information pro-
vided by the failure of a mechanically checked hand
proof is on a conceptual level, thus providing more di-
rect information on where one's assumptions about a
particular automaton speci�cation are incorrect. Me-
chanically checked hand proofs have an additional ad-
vantage: they make it easier to predict the e�ects of
changes in speci�cations on the properties of the spec-
i�ed automata. In addition, when these changes do
not a�ect the validity of a property, checking the prop-
erty can often be done by modifying the former proof
only slightly, or not at all|as opposed to rerunning a
time-consuming algorithm on the entire speci�cation.

Our use of PVS as a basis for speci�cation and
proof support has been largely successful. Using de-
cision procedures to handle the obvious low-level rea-
soning greatly facilitates the creation of the proofs.
Moreover, the rich speci�cation language of PVS sup-
ports both parameterized theories and higher-order
constructs that allow functions and predicates to be
used as record components and theory parameters. As
a result, once one has identi�ed common features to
include in a template, expressing the template in PVS
is largely straightforward and natural. The higher-
order logic of PVS makes it possible to prove useful,
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reusable high level theorems about arbitrary predicates
and functions, such as our induction principle.

However, the current version of PVS does not always
satisfy our needs. For example, it imposes some con-
straints that limit the directness with which one can
express timed automaton speci�cations and translate
steps from hand proofs. For example, we must use a
single slot (which we label basic) in the state record
type to hold all the specialized state components of
an instantiation of our template, and we must some-
times use assertion numbers in the translation of hand
proofs. Most or all of these problems can be solved by
a combination of enhancements to PVS (e.g., the abil-
ity to recognize assertions by content) and an interface
to PVS specialized for the timed automata model.
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